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57 ABSTRACT

The present invention provides multivariate methods for
analyzing microarray gene expression data of high dimen-
sional space and thereby identifying differentially expressed
genes. The methods of this invention provide a random
search procedure with multiple starts and early stop. Larger
sets of differentially expressed genes may be identified using
the methods of this invention starting from feature spaces of
smaller dimensionality where accurate estimates on covari-
ance matrix can be made.
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MULTIVARIATE RANDOM SEARCH METHOD
WITH MULTIPLE STARTS AND EARLY STOP FOR
IDENTIFICATION OF DIFFERENTIALLY
EXPRESSED GENES BASED ON MICROARRAY
DATA

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates in general to statisti-
cal analysis of microarray data generated from nucleotide
arrays. Specifically, the present invention relates to identi-
fication of differentially expressed genes by multivariate
microarray data analysis. More specifically, the present
invention provides an improved multivariate random search
method for identifying large sets of genes that are differen-
tially expressed under a given biological state or at a given
biological locale of interest. The method of the invention
implements multiple starts and early stop in the random
search of sets of differentially expressed genes.

[0003] 2. Description of the Related Art

[0004] Gene expression analyses based on microarray data
promises to open new avenues for researchers to unravel the
functions and interactions of genes in various biological
pathways and, ultimately, to uncover the mechanisms of life
in diversified species. A significant objective in such expres-
sion analyses is to identify genes that are differentially
expressed in different cells, tissues, organs of interest or at
different biological states. So identified, a set of differen-
tially expressed genes associated with a certain biological
state, e.g., tumor or certain pathology, may point to the cause
of such tumor or pathology, and thereby shed light on the
search of potential cures.

[0005] In practice, however, gene expression studies are
hampered by many difficulties. For example, poor reproduc-
ibility in microarray readings can obscure actual differences
between normal and pathological cells or create false posi-
tives and false negatives. The tension between the extremely
large number of genes present (hence high dimensionality of
the feature space) and the relatively small number of mea-
surements also poses serious challenges to researchers in
making accurate diagnostic inferences.

[0006] Existing methods for selecting differentially
expressed genes are typically univariate, not taking into
account the information on interactions among genes. As
appreciated by an ordinary skilled molecular biologist,
genes do not operate in isolation—activation of one gene
may trigger changes in the expression levels of other genes.
That is, genes may be involved in one or more pathways.
Therefore, determination of differentially expressed genes
calls for consideration of covariance structure of the
microarray data, in addition to, for example, mean expres-
sion levels. In this regard, however, application of well-
established statistical techniques for multidimensional vari-
able selection encounters much difficulty. This is so because,
in one aspect, the small number of independent samples and
the presence of outliers make the estimates on selected
variables unstable for large dimensions. In other words, only
small sets of genes can be meaningfully considered while a
relatively large number of genes are potentially differentially
expressed. It is generally impossible to compare all gene
subsets and find the optimal one because the number of
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possible gene combinations is prohibitively large. On the
other hand, if a global optimum could be found, it might be
overly specific to a training sample due to overfitting. Thus,
it remains a significant challenge to scale methods for
identifying differentially expressed genes to deal with
microarray data of high dimensional space.

[0007] Therefore, there is a need to address the difficulties
in applying multivariate analysis to microarray data—a need
to establish rigorous methods for identification of differen-
tially expressed genes from high dimensional gene expres-
sion data.

SUMMARY OF THE INVENTION

[0008] It is therefore an object of this invention to provide
multivariate methods for analyzing microarray gene expres-
sion data of high dimensional space and thereby identifying
differentially expressed genes. Particularly, it is an object of
this invention to provide methods for identifying larger sets
of differentially expressed genes starting from feature spaces
of' smaller dimensionality where accurate estimates on cova-
riance matrix can be made. More particularly, the present
invention provides a random search method with multiple
starts and early stop.

[0009] In accordance with the present invention, there is
provided methods for identifying a set of genes from a
multiplicity of genes whose expression levels at a first and
a second state, in a first and a second tissue, or in a first and
a second types of cells are measured in replicates using one
or more nucleotide arrays, thereby generating a first plurality
of independent measurements of the expression levels for
the first state, tissue, or type of cells and a second plurality
of independent measurements of the expression levels for
the second state, tissue, or type of cells. The method
comprises: (a) identifying a quality function capable of
evaluating the distinctiveness between the first plurality and
the second plurality; (b) selecting a subset of genes, whose
expression levels in the first and second states, tissues, or
types of cells are represented in the first plurality and the
second plurality, respectively; (¢) calculating the values of
the quality function for the subset of genes in the first state
and said second state based on the first and second plurality,
thereby determining the distinctiveness of the first and the
second plurality; (d) substituting a gene in the subset with
one outside of the subset, thereby generating a new subset,
and repeating step (c), keeping the new subset if the dis-
tinctiveness increases and the original subset if otherwise;
(e) repeating steps (c¢) and (d) for a first predetermined
number of times, thereby identifying a locally optimal
subset of genes; (f) repeating steps (b) to (e) for a second
predetermined number of times, thereby identifying the
second predetermined number of the locally optimal subsets;
and (g) integrating the second predetermined number of the
locally optimal subsets into the set of genes, wherein the set
is larger than the locally optimal subsets in size.

[0010] According to the present invention, in certain
embodiments, the states may be biological states, physi-
ological states, pathological states, and prognostic states. In
other embodiments, the tissues may be normal lung tissues,
cancer lung tissues, normal heart tissues, pathological heart
tissues, normal and abnormal colon tissues, normal and
abnormal renal tissues, normal and abnormal prostate tis-
sues, and normal and abnormal breast tissues. In yet other
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embodiments, the types of cells may be normal lung cells,
cancer lung cells, normal heart cells, pathological heart cells,
normal and abnormal colon cells, normal and abnormal
renal cells, normal and abnormal prostate cells, and normal
and abnormal breast cells. In still other embodiments, the
types of cells may be cultured cells and cells isolated from
an organism.

[0011] According to another embodiment of this inven-
tion, the integrating is performed by selecting the genes
whose frequency of occurrences in the second predeter-
mined number of the locally optimal subsets exceeds a third
predetermined number. In certain embodiments, the third
predetermined number is 1% or 5%. According to yet
another embodiment, the first predetermined number is
sufficiently small such that the global maximum is not
reached. According to still another embodiment, the quality
function is a parametric function or a non-parametric func-
tion. In a further embodiment, the parametric function is
selected from the group consisting of the Mahalanobis
distance and the Bhattacharya distance.

[0012] In various embodiments of the invention, the
nucleotide arrays may be arrays having spotted thereon
c¢DNA sequences and/or arrays having synthesized thereon
oligonucleotides.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 depicts the steps of multivariate random
search with multiple starts and early stop according to one
embodiment of the invention.

[0014] FIG. 2 shows the differences of gene selection
using multivariate random search with early or late stop
according to various embodiments of the invention. First
row are histograms of the values from the “last best itera-
tion” in the N, search. Second row are histograms of the
estimated Mahalanobis distances for the N_ ;. selected sets.
Third row are histograms of the frequency of occurrences of
the differentially expressed genes (1-20) in one of the
selected sets.

[0015] FIG. 3 shows ROC curves for various values of
N, controlling the stopping time based on 10 simulated data
sets, error bars depicting the corresponding standard errors.

[0016] FIG. 4 shows the differences of gene selection
from same or different tissues using multivariate random
search with early or late stop according to various embodi-
ments of the invention. First row are histograms of the
values of the “last best iteration” in the N, searches.
Second row are histograms of the estimated Mahalanobis
distances for the N sub-optimal sets.

cycle

[0017] FIG. 5 shows the differences of the frequency of
inclusion in the selected locally optimal set using multivari-
ate random search according to one embodiment of the
invention, applied to same or different tissue samples and
with or without controls.

DETAIL DESCRIPTIONS OF DISCLOSURE
Definition

[0018] As used herein, the term “microarray” refers to
nucleotide arrays; “array,”slide,” and “chip” are used inter-
changeably in this disclosure. Various kinds of nucleotide
arrays are made in research and manufacturing facilities
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worldwide, some of which are available commercially.
There are, for example, two kinds of arrays depending on the
ways in which the nucleic acid materials are spotted onto the
array substrate: oligonucleotide arrays and cDNA arrays.
One of the most widely used oligonucleotide arrays is
GeneChip™ made by Affymetrix, Inc. The oligonucleotide
probes that are 20- or 25-base long are synthesized in silico
on the array substrate. These arrays tend to achieve high
densities (e.g., more than 40,000 genes per cm?). The cDNA
arrays, on the other hand, tend to have lower densities, but
the cDNA probes are typically much longer than 20- or
25-mers. A representative of cDNA arrays is LifeArray made
by Incyte Genomics. Pre-synthesized and amplified cDNA
sequences are attached to the substrate of these kinds of
arrays.

[0019] Microarray data, as used herein, encompasses any
data generated using various nucleotide arrays, including but
not limited to those described above. Typically, microarray
data includes collections of gene expression levels measured
using nucleotide arrays on biological samples of different
biological states and origins. The methods of the present
invention may be employed to analyze any microarray data;
irrespective of the particular microarray platform from
which the data are generated.

[0020] Gene expression, as used herein, refers to the
transcription of DNA sequences, which encode certain pro-
teins or regulatory functions, into RNA molecules. The
expression level of a given gene refers to the amount of RNA
transcribed therefrom measured on a relevant or absolute
quantitative scale. The measurement can be, for example, an
optic density value of a fluorescent or radioactive signal, on
ablot or a microarray image. Differential expression, as used
herein, means that the expression levels of certain genes are
different in different states, tissues, or type of cells, accord-
ing to a predetermined standard. Such standard maybe
determined based on the context of the expression experi-
ments, the biological properties of the genes under study,
and/or certain statistical significance criteria.

[0021] The terms “vector,”probability distance,”*distan-
ce,”‘the Mahalanobis distance,”“the Euclidean distance,
““feature,”‘feature  space,”“dimension,”‘space,”“type |
error,”‘type Il error,” and “ROC curve” are to be understood
consistently with their typical meanings established in the
relevant art, i.e. the art of mathematics, statistics, and any
area related thereto. For example, a set of microarray data on
p distinct genes represents a random vector X=X, ..., X
with mutually dependent components.

P

Improved Random Search Procedure with Multiple Starts
and Early Stop

[0022] Random search algorithms have been used for
finding optima in complex combinatorial spaces. See, e.g.,
Zhigljavsky A A., Vol. 65, Mathematics and its Applications,
Kluwer Academic Publishers Group, Dordrecht, 1991. The
improved random search procedure according to one
embodiment of this invention applies a local search proce-
dure multiple times and then integrates the selected sets of
genes to build a global optimal set of differential expressed
genes. To prevent overfitting, short local searches may be
performed. Local maximum regions are carefully examined
and convergence to a unique global maximum is avoided.
The method can be applied in conjunction with a variety of
parametric and non-parametric quality functions, which are
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discussed in more detail in the next section. In certain
embodiments, the improved random search procedure with
multiple starts and early stop includes the following steps:

[0023] 1. Randomly select N_, . genes from N_,
wherein N ..., is the number of genes in a subset, N, is the
total number of the genes, and N, is smaller then N;,.

subset

[0024] 2. Evaluate the quality function for the N,
genes.

subset

[0025] 3. Generate a new evaluation point (i.e., starting
point) by swapping one or more randomly selected genes
between the currently selected set and the rest of the genes,
thereby identifying g a new N

subset*

[0026] 4. Evaluate the quality function for the new N, .,
genes; if its value has decreased, then return to the previous
N otherwise maintain the new N

subset? subset*

[0027] 5. Repeat steps 3 and 4 until the number of itera-
tions reaches a predetermined number—Iet it be N,,,—then
save the resultant N, ... at that point.

subse

[0028] 6. Repeat steps 1-5 N ;.

[0029] 7. BEvaluate the resultant N_,. groups of N,
genes to identify an integrated larger set of genes.

[0030] In step 7, a post-processing step, the local optima
are combined to provide a final, global solution, i.e., an
integrated larger set of differentially expressed genes. Heu-
ristically, strongly differentially expressed genes should
appear in many of the local maxima. Therefore, each gene
to be included in the final set of differentially may be
identified based on the frequency of its occurrence in the
sub-optimal (i.e., locally optimal) sets derived from each of
the N, cycles, as performed in steps 1-6 above. A con-
servative estimate of the p-value corresponding to the
observed frequency can be calculated. For example, if a
gene is not differentially expressed, the probability that it
will be in the selected subset by chance is expected to be
equal to N, ./N.;;, and most likely smaller. As the number
of repetitions Ny, is large, the final selection frequency of
this gene may be approximated by a Poisson distribution
with a mean N .0Ng,pee/Nyy- Based on this null-distri-
bution the corresponding p-values for each gene may be
calculated.

times.

subset

[0031] Generally, N_,, ... is limited by the number of
available training samples (e.g., the number of microarray
slides in a typical experiment) and hence, N_,, ... may be
significantly smaller than N_;;. Depending upon the particu-
lar quality function of choice, the nature and the extent of
this limitation may vary; but, generally, both parametric and
non-parametric criteria are sensitive to the scarceness of
training samples in a high-dimensional feature space. In this
connection, one significant advantage of the improved ran-
dom search method disclosed herein is that, the detectable
number of the differentially expressed genes is not limited
by N, sser> €ven though the depth of the estimated interaction
structure (e.g., the covariance matrix) may be affected. In
other words, a relatively large set of differentially expressed
genes may be identified by integrating the subsets of genes
selected from multiple local searches. In some embodiments
of this invention, the final set of differentially expressed
genes is significantly larger in size than the subset identified
in the local search, i.e., the locally optimal subset: N,

subset*
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[0032] The determination of N, is crucial for preventing
overfitting. It cannot be too small because a small value may
not permit finding truly differentially expressed genes. On
the other hand, too large a number will not be efficient.
When the value is too big, the same maximum may be

attained in many iterations of search because of overfitting.

[0033] With regard to N_, ., this is a number that sub-
stantiates the variability of this random search procedure. It
may be as large as possible, only limited by the applicable
CPU power (e.g., N_,.;.=1,000,000 may be used).

cycle

Quality Functions Used in Conjunction with the Random
Search Procedure

[0034] A variety of quality functions may be used in
conjunction with the improved random search procedure in
various embodiments of this invention. A quality function
measures the “distinctiveness” of the two tissues or two
biological states under comparison based on a set of genes,
taking into account the correlation structure. Generally,
properly specified parametric methods are more powerful
than non-parametric methods due to the utilization of addi-
tional information accounted in the model, although such
parametric quality functions may be sensitive to any depar-
ture from the model. With microarray data, since small
sample sizes are a prevalent problem, choosing an appro-
priate parametric quality function may be advantageous in
its power, whereas a non-parametric random search method
may be more robust. One parametric measure of the differ-
ences between two multidimensional samples is the Mahal-
anobis distance, which is used in one embodiment of this
invention. See, Mahalanobis PC., Proceedings of the
National Institute of India (1936) 2 Vol. 49.

-1

) w-w,

i+ Zy
Ryan = (v - ’4)/(

[0035] where v and u are the sample means and =, 2, are
the two sample variance-covariance matrices. It is a natural
extension of the t-statistic to a multidimensional setting.
Because of the matrix inverse involved, the calculation of
the Mahalanobis distance at every step of the search—for
N yete' Nie,times—may appear to be prohibitive. However,
with the improved random search procedure of this inven-
tion, changes in the vectors are only in one dimension on
every step (see supra, steps 1-5); therefore, a fast update
formula may be permitted. See, e.g., McLachlan G J.,
Discriminant Analysis and Statistical Pattern Recognition,
(1992) Wiley, N.Y.

[0036] In another embodiment of this invention, the Bhat-
tacharya distance may be used, especially where differences
in both the mean and the covariance structure are of interest.

Z,+Z,

1 1 7
R:,. = <Ry +=In .
A I RN TN

[0037] Similarly, other parametric or non-parametric dis-
similarity measures may be used in various alternative
embodiments in conjunction with the improved random
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search procedure disclosed herein. Such different choices of
quality functions each may be designed to deal with microar-
ray data with different characteristics.

[0038] Further, when using various quality functions, vari-
ous background reduction, normalization, and other adjust-
ment procedures may be applied to the microarray data. For
example, rank-based adjustment and the typical mean-log
adjustment (dividing by mean and take logarithm) may be
used. In one embodiment, the following adjustment is imple-
mented: the data points on each slide or array were replaced
by their normal scores using the formula

x=<1>’1(ranijij/Nau).
where @' () is the 1000™ percentile of the standard
normal distribution and rank;x;; is the rank of x;; among all
of the observations on the j* slide. See, Tsodikov A. et al.,
(2002) Bioinformatics 18: 251-260.

Computer Simulation of the Multivariate Search Method

[0039] A simulation study was performed to evaluate the
improved random search method. Totally 1000 genes were
divided into subsets of equal size 20. One of the subsets was
selected to be deemed as differentially expressed with the
gene-specific ratio d randomly generated for each of the
genes from a lognormal distribution with mean 1 and
variance 0.5. The correlation structure was kept the same in
the two hypothetic tissues. In the selected subset some of the
genes exhibited large over- or under-expression, while oth-
ers with d=1 changed their expression level only slightly.
The simulation was performed on 20 slides or arrays with
one of the tissues on the green channel and the other on the
red channel. The relevant parameters for the random search
were set: N ;.=10,000, N_,, .=5; and, the Mahalanobis
distance was used as the quality function.

[0040] Referring to FIG. 1, the results of the random
search procedure are compared between N;,.,=1000 (in the
left panels) and N,,.,=100,000 (in the right panels). The two
graphs on the top show the histograms of the values of the
“last good iteration”—the number of iterations after which
no new successful steps were encountered (i.e., when no
new subset was found any more at step 4 of the aforemen-
tioned procedure and thus the final set was determined). The
two histograms demonstrate that 1000 iterations were a little
less than sufficient to reach the global maximum, whereas
10,000 iterations were more than enough for the random
search to converge.

[0041] The middle graphs illustrate the same phenomenon
in another way. In the case of early stopping, i.c., when
Nii;=1000, the distribution of the Mahalanobis distances
corresponding to the N, sub-optimal sets is unimodal
with high variability. Thus, the procedure has explored many
different local maxima with a variety of corresponding
values of the quality function. On the other hand, when the
number of iterations increase, e.g., when N; _ =100,000, the
distribution of the Mahalanobis distances achieved in the
sub optimal sets became very discrete. In about half of the
cases the search reached the global maximum on a unique
combination of genes. Therefore, in this situation, although
the global maximum was found, many local maxima and the
corresponding differentially expressed genes from the vari-
ous subsets were missed. When early stop is carried out at
the 1000-th iteration, none of 10,000 cycles found the global
maximum, but a variety of genes were selected.
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[0042] At the bottom panel of FIG. 1, the frequencies of
selection for the 20 genes in the differentially expressed gene
set are plotted. The x-axis represents the number of the
genes: from gene No. 1 to No. 20. With N, _=1,000, i.e.,
when the early stop was implemented, 17 from 20 genes
pass the selection criteria (predetermined to be a frequency
of occurrence higher than 0.5%). With N, =100,000, i.e.,
when the early stop was not implemented, only 10 genes met
the 0.5% frequency standard when the global maximum was

attained.

[0043] Referring to FIG. 2, the ROC curves correspond-
ing to values of N, ranging from 100 to 10,000 based on
10 independently simulated data sets were plotted. Other
parameters were held constant, that is, N,pee=5, Neyee=10,
000. For each search, a list of genes with associated fre-
quencies of occurrence in the selected subsets were com-
plied and a final set of differentially expressed genes was
identified by applying cutoff values ranging from 0.1% to
10% in frequency. Based on the null hypotheses of no
differential expression, for each of these sets, the ratio of
type 1 error (i.e., the false positive) was defined as the
proportion of non-differentially expressed genes that was
selected into the final set. And the ratio of the type II error
(i.e., the false negative) was defined as the proportion of the
genes in the differentially expressed subsets that were not
included in the final set. The resulting ROC curves are
shown in FIG. 2. Also, as a reference, the point representing
the type I error and the power of the marginal t-test with 5%
significance level is also plotted (referring to the star in FIG.
2). Comparing the ROC curves in FIG. 2, a skilled artisan
can note that the value of N, significantly affects the
performance of the random search procedure: long searches
are inferior to searches with early stop. There ought to be,
however, a limit on bow early the search should stop,
because very short searches are not likely to reach any local
maxima. According to FIG. 2, the best performance was
achieved when N;_, =500.

iter

[0044] The invention is further described by the following
examples, which are illustrative of the invention but do not
limit the invention in any manner.

EXAMPLE 1

A Detailed Illustration of Random Search with
Multiple-Starts and Early Stop

[0045] Referring to FIG. 3, suppose there are p genes and
n and m independent samples in the two classes respectively,
this procedure finds a group of genes differentially expressed
in these classes using information on the k-variate depen-

dence structure.
[0046] 1. Repeat the following N, times. N, is not too
large; early stop—stop before convergence—is imple-

mented.

[0047] a.Randomly select k genes (genes 2 to gene k in
FIG. 3) that will serve as the seed of the random search.

[0048] b. Calculate the distance between the two classes
based on the k initially selected genes.

[0049] c. Randomly select a gene (e.g., gene 2 in FIG.
3) from the current gene set (gene 2 to gene k in FIG.
3), remove it from the set and replace it with a gene
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randomly selected from outside of the set (e.g., any of
gene k+1 to gene p in FIG. 3, let it be gene x).

[0050] d. Calculate the distance between the two classes
based on the new gene set (gene 3 to gene k, plus gene
x). If this distance is larger than the previously calcu-
lated one, then keep the change, otherwise revert to the
previous set.

[0051] e. Retain the selected sub optimal set of genes,
i.e., the set that has the largest distances between the
two classes.

[0052] 2. Repeat step 1 N, sets of

genes of size k.

times, obtain N

cycle cycle

[0053] 3. For each gene, calculate the frequency of its
occurrence as a member of a sub-optimal set.

[0054] 4. The final set of genes is defined as the genes that
have a frequency of occurrence exceeding a preset limit.

EXAMPLE 2

A Source Code Segment Implementing Random
Search with Multiple Starts and Early Stop—Step 1
and 2 of Example 1

[0055]

Program genel

c
parameter (nall=1000, ncl=10, niter=500, m=20,1=2,nt=2)
parameter (ishift=3000,NCYCLE=1000)

parameter (genadd=>5.,disp=1.,debug=2.)

parameter (expmax=20.,strang=1.e-15)

parameter (kel=5,iap=1,nex=10)

parameter (pat=1.5,dpat=0.,frailty=0.2,ncls=20,purity=0.85)
c

CHARACTER*50 jmode,qualit, ranf ku,stat,start,normal,mixup
CHARACTER*50 sound,ill

DIMENSION AP(L*IAP),DEL(M*1)

DIMENSION DEN((KCL+2)*L),PST(L),DFM(L*(KCL+2)*L*iap)
DIMENSION F(KCL+2),DS(M*L*L*(KCL+2))
DIMENSION DI(ncl),DETER(L),rank1(m),rank2(m)

c

dimension err(kel+2),g((kel+2)*1),ent(1)

c

Dimension inum(nel),b(nall*m*1),a(nall*m*1),cl(ncl*m*1),u(m*1)
dimension e(ncl*ncl),ito(1),ind3(niter)

dimension el (ncl*nel),e2(ncl*ncl),e3(ncl*nel),z(nex*nex)
dimension imbest(ncl),x(m*1),v(nall),m22(m*1),ind2(nall)
dimension r(ncl*ncl*1),r2(ncl*1),r3(ncl*nel*1)

dimension mv(kel),ff(kel),dd(kel),rr(kel)

dimension stud(nall), tkolm(nall),tmann(nall)

dimension iex(nex)

c

character*10 ndata, ntime

data iex/1,2,3,4,5,6,7,8,9,10/

data £/0.5,0.6,0.7,0.8,0.9,1.0,1.1/

data ap/0.5,0.5/

data qualit /*mahalo’/

data jmode /‘one-leave-out-"/

data mixup /‘no’/

data ranf/*ffile’/

data normal/‘gauss’/

data stat /*param’/

data start /*bestcor’/

c

sound="redl.txt’

ill=*red2.txt’

c
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-continued

Program genel

OPEN (unit=NT,FILE=‘b’, FORM="FORMATTED",
STATUS="‘unknown’)
open(unit=11,file=sound,form="formatted’,

* status="old’)

open(unit=22,file=ill, form="*formatted’,

* status="old’)

open(unit=68, file=‘inbest.dat’ ,form="formatted’,

* status="unknown’)

open(unit=69,file=‘best.dat’ ,form="formatted’,

* status="unknown’)

c

write(nt,*(//30%,“GENE CLUSTER MASTER"/)")
write(nt, (“Number of slides M = 7, i3)")m

write (nt,*(“Number of genes NALL =",i5,

* < genuin cluster size=",i4,“ to be searched:”,i4)")

* nall,ncls,ncl

write (nt,*(“DATA normalization to(by) = ”,A10)")normal
write (nt,*(“Type of Statistics Used = »,A10)”)stat
if(ranf.ne. ffile’)then

write(nt,‘(“Overexpression of Poisoned Genes ”,f5.1,

* “Variance ”,f5.1)")

* genadd,disp

write(nt, (“Random Numbers Generator ”,a10,” ,Shift”,i5)’)
* ranfishift

end if

write(nt,*(//30x,“SIMULATION PARAMETERS™/)")
write(nt, (“Sound data from: »a30)’)sound

write(nt, (“Patology data from: ”a30))ill

write(nt, (“SIMULATED PATOLOGY LEVEL: ”,f3.1,“+/-",f3.1)")
* pat,dpat

write(nt, (“Level of mutual Frailty for Cluster: , 5.2)")
* frailty

write(nt, (“Mixture: ”,£5.2,“LogNorm +”,f5.2*Uniform™)’)
* purity,l.-purity

c
write(nt,*(//30x,“SEARCH PARAMETERS™/)")
write(nt, (“MIXUP the GENES? ”, al0)”)mixup
write(nt, (“SEARCH MODE ”, al10)’)qualit
write(nt, (“Number of Random Search Trials:”i7)")
* niter

if (nex.ne.0) then

write(nt, (“ATTENSION!, Genes Excluded:”/10(10i6/))")
* (iex(i),i=1,nex)

end if

if(qualit.eq. ‘parz’.or.qualit.eq. ‘knn’)then
write(nt,'(“MODE OF BAYES QUALITY ”, al0)’)ku
write (nt,*(“Number and values of kernels”,i5/

* 15 £5.1))kel,(f(i),i=1,kel)

end if

do i=1,ishift

aa=rndm(-1.)

end do

c

if(ranf.eq. uni’)then

do i=1,nall*m*2

b(i)=1.+rndm(-1.)*disp

end do

c

else if (ranfl.eq.‘normco’)then

do i=1,nall*m-1,2

call normco(b(i),b(i+1),5.,3.,disp,disp,0.9)

end do

do i=nall*m+1,nall*m*2-1,2

call normco(b(i),b(i+1),5.,3.,disp,disp,—0.9)

end do

else if(ranf.eq.‘ffile’) then

call rfromf(b, nall,m,l)

c

else

write(nt,(“no such data mode”,al0)’)ranf

stop 67

end if

if(ranf.ne, ffile’) then

c
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Program genel

Program genel

do j=m,2*m-1

do i=nall*j+1,nall*j+ncl

b(i)=b(i)+genadd

end do

end do

if (nall.le.10) then

write (nt,*(10£7.2/)")b

end if

end if

c

if(mixup.eq.‘yes”) then

do i=1,nall

ind2(i)=i

end do

do i =1, ishift

iin=rmdm(-1.)*nall+1
iout=rndm(-1.)*nall+1

numold=ind2(iout)

ind2(iout)=ind2(iin)

ind2 (iin)=numold
if(iin.gt.nall.or.iout.gt.nall.or.iin.It.1.or.iout.1t.1) then
write(*, (“BIGGGGG!!!!™, 3i18)")i,iin,iout
end if

call exchange(b,nall,m,l,iin,iout,x,u)

end do

if (debug.ge.5) then

write (nt,*(“Mixed Cluster”/1000(10i8/))")
* (ind2(i),i=1,nall)

end if

end if

c

if (normal.ne.‘no”) then

call normalization(b,ind2,nall,m,l,stud,tkolm,normal)
end if

c
call tests(b,m22,ind2,nall,m,l,x,u,stud,tkolm,tmann,nt,ncl)
c

ito(1)=m

ito(2)=m

mb=ito(1)+ito(2)

istg=0

c

sd=0.

stiter=1.620

c

do i=1,m*1

u(i)=1./m

end do

c
if(start.eq. ‘bestcor’.and.nex.ge.2) then

do i=1,nex

inum(i)=iex(i)

end do

call assign(b,inum,cl,nex,nall,m,l)

c

¢ write (*,°(u(i) */10(1018.5/))")

¢ * (u(i), i=1,m*1)

c

call misrl(cl,r2,r,u,nex,ito,mb,l)

call cover(r,r3,z,nex,m,l)

write (ut, (/25%,“CORRELATION MATRIX™/10(12i6/))")
* (iex(i), i=1,nex)

write (nt,*(/10(1016.2/))")

* (r3(i), i=1,2*nex*nex)

write (nt, (/25%,“FISHER MATRIX™/10(10i6/))")

* (iex(i), i=1,nex)

write (nt,*(/10(1016.2/))")

* (z(i), i=1,nex*nex)

write (nt,*(/“Genes means /5(10f6.2/)))

* (r2(i), i=1,2*nex)

c

call bhafas(r,r2,e,el,e2,e3,rb,rm,rc,nex,qualit,debug)
write (nt,*(/“Mahalonobis Distance: ”,£12.2)")rm

c

stop 777

end if

DO ICY=1,NCYCLE

ii=0

if(start.eq. ‘random’) then

c

iin=rmdm(-1.)*nall+1

inum(1)=iin

c

do i=2,ncl

88 continue

inew=rndm(-1.)*nall+1

do j=1,i-1

if(inew.eq.inum(i—j))then

go to 88

else

inum(i)=inew

end if

end do

end do

else if(start.eq.‘last’) then

DO I=1,NCL

ii=ii+1

inum(ii)=i+NALL-NCL

end do

else if(start.eq.‘first”) then

do i=nall, nall-ncl,-1

ii=ii+1

inum(ii)=i+NALL-NCL

end do

else if(start.eq.‘frombest’) then
read(68,°17,e12.4,(10(10i6/))")1l,qq,(inum(i),i=1,necl)
else

stop 9999

end if

c

write (nt,*(** Initially Selected genes »/
* 5(10i5/))”)inum

DO iter=1,niter

c

if (iter.ne.1)then

call change(inum,nall,ncl,iin,iout,numold,ind3,iter,niter,
* jex,nex)

else

iin=1

iout=1

numold=99

c

end if

if (iter.gt.1.and.iter.le.5.and.debug.ge.3.) then
write (nt,*(“Iteration”,i4,* Exchanged genes ”,3i5/
* “MASK Array”™/

* 5(10i5/))")iter,]IN, iout,numold,(inum(i),i=1,ncl)
end if

c

call assign(b,inum,cl,ncl,nall,m,l)

c

if(stat.eq. param’)then

call misrl(cl,r2,r,u,ncl,ito,mb,l)

c
if (debug.ge.3) then

write (nt,*(“Genes cov “/5(5f12.5/))")r

call cover(r,r3,z,ncl,m,l)

write (nt,*(“Genes cor »/5(5f12.5/))")r3

write (nt,*(“Genes means ”,5(5f12.2/))")r2

end if

else if (stat.eq.‘nonparam’)then

call SPIR1(c1,r2,R.X,V,NCL,M,L,m22,ind2,rank1,rank2)
if (debug.ge.5) then

write (nt,*(“Genes spirmen /5(10f12.5/))")r

write (nt,*(“Genes medians ”,5(10f12.2/))")r2

write (nt,*(“Genes interQU ”,5(10f12.2/))")

* (v(i),i=1,ncl*1)

¢ stop 777
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Program genel

Program genel

end if
end if
¢ BHATTACHARYA DISTANCE

c
if(qualit.eq.‘bhata’) then

ss=1b

else if (qualit.eq.‘mahalo’) then

ss=rm

else if (qualit.eq.‘corcor”) then

ss=rc

c

else

write(nt,‘(“no such quality function”,a10)’) qualit
stop 67

end if

end if

c

IF(SS.GT.SD) THEN

SD=SS

ISTG=ISTG+1

c

¢ REMEMBERING OF BEST VALUES

c

¢ CALL UCOPY (inum,imbest,ncl)

do iu=1,ncl

imbest(iu)=inum(iu)

end do

ibest=iter

c

CALL DATIMH(NDATA,NTIME)

c

WRITE(*,*(“SUCCESS at: ”,A12,2X,A12,
* « ITERATION”, i7, QUALITY”,e14.6)")
* NDATANTIME,ITER,SD
write(*,°(10(10i5/))’) (inum(i),i=1,ncl)
if(debug.ge.2)then

WRITE(nt, (“GOOD!!, Iteration and Q”,i7,e14.6)")ITER,SD

write(nt,*(10(10i5/))’) (inum(i),i=1,ncl)
end if

ELSE IF(SS.LE.SD) THEN
inum(iout)=numold
if(debug.ge.3.and.iter.le.10)then

CALL DATIMH(NDATA ,NTIME)

WRITE(nt, (“BAAD!!! Qnew and Qbest”,i7,2¢14.6)")ITER,SS,SD

end if
END IF
if(SD.GT.STITER) then

write (NT,*(“REQUIRED DISTANCE ACHIEVED!”,2e15.3)")

* SD, STITER

goto 18

end if

c

END DO

18 continue

write(nt,(25x,* CYCLE N ” i6/)")ICY
write(nt,‘(“Distance used : ”,A6,* Quality=",e15.3)")
* qualit,sd

write(nt, ‘(“Number of successful steps : ”,i5))istg
write(nt,‘(“Best Cluster Obtained After: ,
*19/20(10i7/))”)

* niter,imbest

¢ rewind 68

write(69,°(i7,f12.4,20i6)") ibest,sd,imbest
¢ write(69,°(17,f12.4)) ibest,sd

END DO

c

stop

end

c

subroutine tests(b,m22,ind2,nall,m,l,x,u,stud,tkolm,tmann,nt,ncl)
dimension b(nall,m,l),stud(nall), tkolm(nall),tmann(nall)

dimension x(m*1),u(m*1),m22(m*1),ind2(nall)
134=m*0.75
i14=m*0.25

i5= m*0.5+1

do i=1,nall

do j=1,m

X(j)=b(i,j,1)

u(j)=b(ij,2)

end do

call sortzv(x,m22,m,1,1,0,0)
xd=(x(m22(i34))-x(m22(i14)))/1.35
xm=x(m22(i5))

call sortzv(u,m22,1,m,1,0,0)
ud=(u(m22(i34))-u(m22(i14)))/1.35
um=u(m22(i5))
stud(i)=abs(xm-um)/sqrt(xd*xd+ud*ud)
end do

call sortzv(stud,ind2,nall,1,1,0,0)
write (nt,*(“N.Student Cluster”
*/1000(10i8/))”)

*(ind2(i),i=1,ncl)

call errors(ind2,nt,ncl,nall)

c

do i=1,nall

xm=0.

xm2=0.

um=0.

um?2=0.

do j=1,m

X(j)=b(i,j,1)

u(j)=b(ij,2)

end do

do j=1,m

XM=Xm+Xx(j)

xm2=xm2+x(j)*x(j)

um=um+u(j)

um2=um2+u(j)*u(j)

end do

XM=Xm/m

um=um/m

xd=xm2/m-xm*xm
ud=um2/m-um*um
stud(i)=abs(xm-um)/sqrt(xd+ud)
end do

call sortzv(stud,ind2,nall,1,1,0,0)
write (nt,*(“Param Student Cluster”/1000(10i8/))")
* (ind2(i),i=1,ncl)

call errors(ind2,nt,ncl,nall)

do i=1,nall

do j=1,m

X(j)=b(i,j,1)

x(j+m)=b(i,j,2)

end do

CALL UTEST(x,u,m,m,tmann(i),ZU,JERR)
end do

call sortzv(tmann,ind2,nall,1,0,0,0)
write (nt,*(“Mann-Whitney Cluster”/1000(10i8/))")
* (ind2(i),i=1,ncl)

call errors(ind2,nt,ncl,nall)

do i=1,nall

do j=1,m

X(j)=b(ij,1)

u(j)=b(ij,2)

end do

CALL kolm2(x,u,m,m,tkolm(i),Prob)
end do

call sortzv(tkolm,ind2,nall,1,1,0,0)
write (nt,*(“Kolmogorov Cluster”/1000(10i8/)))
* (ind2(i),i=1,ncl)

call errors(ind2,nt,ncl,nall)

return

end

c
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EXAMPLE 3

A Source Code Segment Implementing Integration
of The Results from Local Searches to Build a
Larger Set of Genes—Steps 3 and 4 Of Example 1

[0056]
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-continued

Program genecount

Program genecount

c
parameter (nall=1000, nclust=>5, ntrial=10000,ncut=10,nr=22,nt=2)
parameter (nctrue=20,ipat=1,ntupw=1,ntidw=17,memw=100000)
parameter (debug=2.)

c

dimension a(nclust*ntrial),c(nall),cut(ncut),genprop(nclust)
dimension sel(nall)

dimension tontuple(nclust+3),ind(nall,nall),ind1(nall)
character*30 selgen

character*8 mode

data cut/0.000005,0.00001,0.00005,0.001,0.002,0.003,0.01,0.03,
*0.05,0.08/

data cutpair/0.1/

data cpair/0.003/

data selgen /‘best.dat’/

data mode/*sim’/

data niter /500000/

c

CHARACTER*1 opmo

CHARACTER*50 hbname

CHARACTER*8 tek(nclust+3)

DATA opmo/*X’/,LRECLR/1024/,LRECLW/1024/

c

OPEN (UNIT=NT,FILE="b.count’, FORM="FORMATTED’,
STATUS="UNKNOWN")
open(unit=nr,file=selgen,form="formatted’ status="old")

c

hbname=*genome.hbook’

tek(1)="lastb’

tek(2)="quality’

tek(3)="N_of gen’

tek(4)="genel’

tek(5)="gene2’

tek(6)="gene3’

tek(7)="gene4’

tek(8)="gene5’

c
¢ tek(i)="gene’//ichar(i-2)

¢ end do

if(ntupw.gt.0) then

call HROPEN(ntidw,‘ani98’ hbname, ‘N’ Ireclw,ISTAT)
end if

call HBOOKN(ntidw,"GENE SELECTION’ nclust+3,
* ¢//ani98’ memw,tek)

write(nt,‘(/10x,“GENE SORTER FOR ”, A10,

* < EARLY STOP AT”,I8)’)mode, NITER

qmean=0.

nmean=0

ntrj=0

ncount=1

do i=1,nclust

genprop(i)=0.

end do

do j=1,ntrial

read(22,* err=100,end=99)nlast,quality,

* (a(i),i=ncount,ncount+nclust-1)

tontuple(1)=nlast

tontuple(2)=quality

Ji=-1

kk=0

do i=4,nclust+3

Ji=ij+t

tontuple(i)=a(ncount+jj)

if(tontuple(i).le.nctrue) then
genprop(i-3)=genprop(i-3)+1.

kk=kk+1

end if

end do

tontuple(3)=kk

call HFN(ntidw,tontuple)
ncount=ncount+nclust

ntrj=ntrj+1

nmean=nmean+nlast
gqmean=qmean-+quality

end do

go to 99

100 continue

write(*,'(“ERROR IN INPUT STREAM ON LINE: ”,i7)")j
c

stop

c

99 continue

write (nt,*(i7, Random Starts, Rm and Last ”,f12.4,i7)")
* ntrj,qmean/ntrj,nmean/ntrj

c

if (mode.eq.‘sim’) then

write (nt,* (/% Of True”,10(5f12.4/))")
* (genprop(i)/ntrj, i=1,nclust)

end if

call vzero(c,nall)

do i=1,nclust*ntrj

do k=1,nall

realk=real(k)

if(a(i).eq.realk) then
sel(k)=sel(k)+1

c(k)=c(k)+1./ntrj

end if

end do

end do

do j=1,ncut

do i=1,nall

ind1(i)=0

end do

ncount=0

do i=1,nall

if (c(i).gt.cut(j))then

ind1(i)=1

if (debug.ge.3) then

write(nt, (“GENE ”,I5,5%,

* “Appearance % ~,F12.5)")[,C(I)
end if

ncount=ncount+1

END IF

end do

c

errl=0.

err2=0.

do i=1,nall
if(ind1(i).eq.1.and.i.le.nctrue)then
errl=errl+1.

else if(ind1(i).eq.l.and.i.gt.nctrue)then
err2=err2+1.

end if

end do

write(nt, (/“N of genes selected with CUT ”,F9.5,i8 )*)
* cut(j),ncount

if (mode.eq.‘sim’) then
write(nt,‘(“error: ”,F9.5.%, 2 error”,F9.5)")
* 1.-errl/nctrue,err2/nall
write(nt,*(“Eta = 1.- lerror/sqrt(2error): ”,F12.5)")
* errl/nctrue/sqrt(err2/nall)

end if

end do

if (debug.ge.4.) then

ncount=0

do i=1,nall

do j=1,nall

ind(i,))=0

end do

end do
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-continued

Program genecount

do ni=1,ntrj

do j=1,nclust-1
kl=ifix(a(ncount+))

do i=j+1,nclust
k2=ifix(a(ncount+i))
ind(k1,k2)=ind(k1,k2)+1
end do

end do
ncount=ncount+nclust
end do

c
do i=1,nall
do j=i+1,nall

c
prop=real(ind(i,j))/sel(i)
if(prop.ge.cutpair.and.c(i).ge.cpair)then
write(nt,‘(“Freq. for genes:”,2i6,3f12.5)")
¢ * “Single frequencies:”,9%,2f12.5)")

* Ljprop.e(i).c(j)

end if

end do

end do

end if

c
if(ntupw.gt.0) then

call HROUT(0,ICYCLE,* *)
call HREND(ani98’)

end if

STOP

END

EXAMPLE 4

Microarray Expression Analysis Using Cells from
Two Colon Cancer Cell Lines

[0057] HT29 cells represent advanced, highly aggressive
colon tumors. They contain mutations in both the APC gene
and p53 gene, two tumor suppressor genes that frequently
mutate during colon tumorigenesis. HCT116 cells manifest
less aggressive colon tumors and harbor functional p53 and
APC. They are defective in DN A repair. The experiment was
performed with three RNA samples (1 pg RNA each).
Cy-3-dCTP (green) was used to label HCT116 cells while
Cy-5-dCTP (red) was used for HT29 cells. Each comparison
set was hybridized against two microarray slides (facing
each other) containing 4608 minimally redundant cDNAs
spotted in duplicate. As control, six Drosophila genes were
added to the Cy-5 samples. Thus, in a red vs. green com-
parison they are differentially expressed by design. This
experiment resulted in a total of twelve measurements on
each channel for each gene on the microarrays. Although a
nested dependence structure existed in the samples, the
analysis assumes them as independent replicates. Addition-
ally, ten HCT116 samples hybridized with Cy-5 (red) from
a separate experiment were included in the analysis.

[0058] Two comparisons were performed: (i) HCT116 vs.
HT29 and (ii) HCT116 (green) vs. HCT116 (red); the first is
inter cell lines whereas the second is intra cell lines. The
relevant parameters for the random search were set: N, .=
10,000, N ,....=5; and, the Mahalanobis distance was used
as the is quality function.

[0059] Referring to FIG. 4, the left panel corresponds to
the comparison of the different cell lines (as the case (i)
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above) whereas the right panel to the comparison of the
same cell line on different channels (as the case (ii) above).
The histograms of the last best iteration (the top two graphs)
are very similar in both cases; neither has reached the global
maximum. That is, in both cases, the procedure kept explor-
ing the local maxima due to the early stopping. However,
turning to the bottom two graphs, the distribution of the
estimated Mahalanobis distances at these local maxima in
each case is very different from each other: When different
cell lines were compared, i.e., in the case (i) above, the
Mabhalanobis distances based on the locally optimal subsets
tended to be much larger than those in the case (ii) above
when the same cell lines were compared. Therefore, the
separation of the two tissues was considerably better in case
(1) than in case (ii), as one would expect.

[0060] Referring to FIG. 5, the first 115 genes ordered
according to the decreasing frequency of occurrence in the
selected subsets are plotted. The white columns represent
genes from same cell line samples without control whereas
the black columns represent genes from different cell line
samples. In addition, the gray columns represent genes from
same cell lines samples with control. As shown, the right
tails of the histograms are very close to each other. Some of
the genes in the HCT116/HT29 comparison (the black
columns) are selected more often—i.e., have higher fre-
quency—than expected under the null hypothesis of no
difference between the two tissues (the white columns).
Interestingly, in the case with same cell line without control
(the white columns), only two genes had a frequency that
was higher than 3%; and, when the control genes were
included (the gray columns), this number increased to six
and four out of the top five genes (Nos. 1, 2, 3, and 5 on the
x axis) were actually Drosophila control genes.

[0061] A frequency level of 1% was selected as the cutoff
for identifying differentially expressed genes. Total 59 genes
were selected and thus 59 cDNA spots were identified on the
slides. A comparison was carried out between the 59 cDNA
spots and the top 59 genes selected by t-statistic. Almost half
of those genes (25 to be exact) were identified by both
methods. However, a characteristic advantage of the multi-
variate random search procedure was its ability to identify
correlated genes. Some of the genes had several correspond-
ing spots on the slides, and therefore their expression levels
at various spots were known to be correlated. Among the 59
genes identified by the multivariate random search method,
13 had two, and two had three spots inter-related to each
other. By comparison, among the genes identified by the
marginal t-statistic, 17 genes had two or more replicates on
the slides, and only one of them had all of its replicates
selected in the resulting list of genes. Therefore, the
improved random search procedure of this invention is
powerful in identifying less pronounced differentially
expressed genes when they are correlated with more
strongly differentially expressed genes.

[0062] Tt is to be understood that the description, specific
examples and data, while indicating exemplary embodi-
ments, are given by way of illustration and are not intended
to limit the present invention. Various changes and modifi-
cations within the present invention will become apparent to
the skilled artisan from the discussion, disclosure and data
contained herein, and thus are considered part of the inven-
tion.
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1. A method for identifying a set of genes from a multi-
plicity of genes whose expression levels at a first state and
a second state are measured in replicates using one or more
nucleotide arrays, thereby generating a first plurality of
independent measurements of the expression levels for said
first state and a second plurality of independent measure-
ments of the expression levels for said second state, which
method comprises:

(a) identifying a quality function capable of evaluating the
distinctiveness between the first plurality and the sec-
ond plurality;

(b) selecting a subset of genes, whose expression levels in
said first state and second state are represented in said
first plurality and said second plurality, respectively;

(c) calculating the values of the quality function for said
subset of genes in said first state and said second state
based on the first and second plurality, thereby deter-
mining the distinctiveness of the first and the second
plurality;

(d) substituting a gene in said subset with one outside of
said subset, thereby generating a new subset, and
repeating step (c), keeping the new subset if the dis-
tinctiveness increases and the original subset if other-
wise;

(e) repeating steps (c) and (d) for a first predetermined
number of times, thereby identifying a locally optimal
subset of genes;

(f) repeating steps (b) to (e) for a second predetermined
number of times, thereby identifying said second pre-
determined number of the locally optimal subsets; and

(g) integrating said second predetermined number of the
locally optimal subsets into said set of genes, wherein
said set is larger than said locally optimal subsets in
size.

2. The method of claim 1, wherein said states are selected
from the group consisting of biological states, physiological
states, pathological states, and prognostic states.

3. A method for identifying a set of genes from a multi-
plicity of genes whose expression levels at a first tissue and
a second tissue are measured in replicates using one or more
nucleotide arrays, thereby generating a first plurality of
independent measurements of the expression levels for said
first tissue and a second plurality of independent measure-
ments of the expression levels for said second tissue, which
method comprises:

(a) identifying a quality function capable of evaluating the
distinctiveness between the first plurality and the sec-
ond plurality;

(b) selecting a subset of genes, whose expression levels in
said first tissue and second tissue are represented in said
first plurality and said second plurality, respectively;

(c) calculating the values of the quality function for said
subset of genes in said first tissue and second tissue
based on the first and second plurality, thereby deter-
mining the distinctiveness of the first and the second
plurality;

(d) substituting a gene in said subset with one outside of
said subset, thereby generating a new subset, and
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repeating step (c), keeping the new subset if the dis-
tinctiveness increases and the original subset if other-
wise;

(e) repeating steps (c) and (d) for a first predetermined
number of times, thereby identifying a locally optimal
subset of genes;

(D) repeating steps (b) to (e) for a second predetermined
number of times, thereby identifying said second pre-
determined number of the locally optimal subsets; and

(g) integrating said second predetermined number of the
locally optimal subsets into said set of genes, wherein
said set is larger than said locally optimal subsets in
size.

4. The method of claim 3, wherein said tissues are
selected from the group consisting of normal lung tissues,
cancer lung tissues, normal heart tissues, pathological heart
tissues, normal and abnormal colon tissues, normal and
abnormal renal tissues, normal and abnormal prostate tis-
sues, and normal and abnormal breast tissues.

5. A method for identifying a set of genes from a multi-
plicity of genes whose expression levels in a first type of
cells and a second type of cells are measured in replicates
using one or more nucleotide arrays, thereby generating a
first plurality of independent measurements of the expres-
sion levels for said first type of cells and a second plurality
of independent measurements of the expression levels for
said second type of cells, which method comprises:

(a) identifying a quality function capable of evaluating the
distinctiveness between the first plurality and the sec-
ond plurality;

(b) selecting a subset of genes, whose expression levels in
said first type of cells and said second type of cells are
represented in said first plurality and said second plu-
rality, respectively;

(c) calculating the values of the quality function for said
subset of genes in said first type of cells and said second
type of cells based on the first and second plurality,
thereby determining the distinctiveness of the first and
the second plurality;

(d) substituting a gene in said subset with one outside of
said subset, thereby generating a new subset, and
repeating step (c), keeping the new subset if the dis-
tinctiveness increases and the original subset if other-
wise;

(e) repeating steps (c) and (d) for a first predetermined
number of times, thereby identifying a locally optimal
subset of genes;

(D) repeating steps (b) to (e) for a second predetermined
number of times, thereby identifying said second pre-
determined number of the locally optimal subsets; and

(g) integrating said second predetermined number of the
locally optimal subsets into said set of genes, wherein
said set is larger than said locally optimal subsets in
size.
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6. The method of claim 5, wherein said types of cells are
selected from the group consisting of normal lung cells,
cancer lung cells, normal heart cells, pathological heart cells,
normal and abnormal colon cells, normal and abnormal
renal cells, normal and abnormal prostate cells, and normal
and abnormal breast cells.

7. The method of claim 5, wherein said type of cells are
selected from the group consisting of cultured cells and cells
isolated from an organism.

8. The method of claim 1, 3, or 5, wherein said integrating
is performed by selecting the genes whose frequency of
occurrences in said second predetermined number of the
final subsets exceeds a third predetermined number.

9. The method of claim 8, wherein said third predeter-
mined number is 1% or 5%.
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10. The method of claim 1, 3, or 5, wherein said first
predetermined number is sufficiently small such that the
global maximum is not reached.

11. The method of claim 1, 3, or 5, wherein said quality
function is a parametric function or a non-parametric func-
tion.

12. The method of claim 11, wherein said parametric
function is selected from the group consisting of the Mahal-
anobis distance and the Bhattacharya distance.

13. The method of claim 1, 3, or 5, wherein the nucleotide
arrays are selected from the group consisting of arrays
having spotted thereon cDNA sequences and arrays having
synthesized thereon oligonucleotides.
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